Mixed vine copulas as joint models of spike counts and local field potentials

نویسندگان

  • Arno Onken
  • Stefano Panzeri
چکیده

Concurrent measurements of neural activity at multiple scales, sometimes performed with multimodal techniques, become increasingly important for studying brain function. However, statistical methods for their concurrent analysis are currently lacking. Here we introduce such techniques in a framework based on vine copulas with mixed margins to construct multivariate stochastic models. These models can describe detailed mixed interactions between discrete variables such as neural spike counts, and continuous variables such as local field potentials. We propose efficient methods for likelihood calculation, inference, sampling and mutual information estimation within this framework. We test our methods on simulated data and demonstrate applicability on mixed data generated by a biologically realistic neural network. Our methods hold the promise to considerably improve statistical analysis of neural data recorded simultaneously at different scales.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vine copulas with asymmetric tail dependence and applications to financial return data

It has been shown that vine copulas constructed from bivariate t copulas can provide good fits to multivariate financial asset return data. However, there might be stronger tail dependence of returns in the joint lower tail of assets than the upper tail. To this end, vine copula models with appropriate choices of bivariate reflection asymmetric linking copulas will be used to assess such tail a...

متن کامل

Vine copulas with asymmetric tail dependence and applications to financial return data 1

In Aas et al. (2009) and Aas and Berg (2009), it is shown that vine copulas constructed from bivariate t-copulas can provide better fits to multivariate financial asset return data. Several published articles indicate that for several assets there might be stronger tail dependence of returns in the joint lower tail than upper tail. We use vine copula models with appropriate choices of bivariate...

متن کامل

Truncation of vine copulas using fit indices

Vine copulas are flexible multivariate dependence models, which are built up from a set of bivariate copulas in different hierarchical levels. However, vine copulas have a computational complexity that is increasing quadratically in the number of variables. This complexity can be reduced by focusing on the sub-class of truncated vine copulas, which use only a limited number of hierarchical leve...

متن کامل

Maximum likelihood estimation of mixed C-vines with application to exchange rates

Multivariate copulas are commonly used in risk management of financial assets. They allow for very flexible dependency structures, even though they are applied to transformed financial data after marginal time dependencies are removed. This is necessary to facilitate statistical parameter estimation. In this paper we consider a very flexible class of mixed C-vines, which can capture a driving f...

متن کامل

Model selection for discrete regular vine copulas

Abstract Discrete vine copulas, introduced by Panagiotelis et al. (2012), provide a flexible modeling framework for high-dimensional data and have significant computational advantages over competing methods. A vine-based multivariate probability mass function is constructed from bivariate copula building blocks and univariate marginal distributions. However, even for a moderate number of variab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016